Abstract: In 1969, economist T. Schelling invented a simple model of interacting particles to explain racial segregation in American cities: The nodes of a simple graph are occupied by agents of different kinds and each of them is inclined to have neighbors of its own kind. While Schelling used pennies and dimes on a checkerboard to implement some old-school-simulations on a finite instance, we are interested in the corresponding model on Z, the one-dimensional integer lattice. It turns out that the asymptotics are similar to the one of the voter model - but only if the range of a move is unbounded.