15.07.2024 14:15 Xunyu Zhou, Columbia University:
Reinforcement Learning for Diffusion ProcessesB 349 (Theresienstr. 39, 80333 München)

Reinforcement learning (RL) is a version of stochastic control in which the system dynamics are unknown (up to the type of dynamics such as Markov chains or diffusion processes). There has been an upsurge of interest in RL for (continuous-time) controlled diffusions in recent years. In this talk I will highlight the latest developments on theory and algorithms arising from this study, including entropy regularized exploratory formulation, policy evaluation, policy gradient, q-learning, and regret analysis. Time permitting, I will also discuss applications to mathematical finance and generative AI.